Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/21072
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.contributor.authorGao, Luyuan-
dc.contributor.authorZhuang, Zhihe-
dc.contributor.authorTao, Hongfeng-
dc.contributor.authorChen, Yiyang-
dc.contributor.authorStojanović, Vladimir-
dc.date.accessioned2024-08-16T09:04:46Z-
dc.date.available2024-08-16T09:04:46Z-
dc.date.issued2024-
dc.identifier.issn0016-0032en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/21072-
dc.description.abstractIterative learning control (ILC) is widely used for trajectory tracking in networked dynamical systems, which execute repeatitive tasks. Traditional norm optimal ILC (NOILC) based on the lifted approach provides an analytical expression for the optimal ILC update law, but it raises a computational complexity issue. As the trial length N (i.e., the number of sampling points in one trial) increases, the computational cost of the lifted approach increases exponentially, which is obviously impractical for long trials. To address this issue, this paper proposes a non-lifted norm optimal ILC (N-NOILC) approach by developing a new non-lifted cost function to improve computationally efficiency. The N-NOILC approach achieves monotonic convergence in the iteration domain, and the computational complexity decreases from O(N^3) of the lifted NOILC approach to O(N ). Therefore, the proposed approach can be applied to large repetitive tasks. Based on the N-NOILC approach, this paper develops a centralized as well as a distributed algorithm for networked dynamical systems. Simulations are presented to validate the effectiveness of two algorithms and demonstrate the significant advantage of the N-NOILC approach in computational efficiency.en_US
dc.language.isoen_USen_US
dc.relation451-03-65/2024-03/200108en_US
dc.relation.ispartofJournal of the Franklin Instituteen_US
dc.subjectIterative Learning Controlen_US
dc.subjectNorm optimizationen_US
dc.subjectNetworked dynamical systemen_US
dc.subjectComputational complexityen_US
dc.titleNon-lifted norm optimal iterative learning control for networked dynamical systems: A computationally efficient approachen_US
dc.typearticleen_US
dc.description.versionPublisheden_US
dc.identifier.doi10.1016/j.jfranklin.2024.107112en_US
dc.type.versionPublishedVersionen_US
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

803

Број преузимања

16

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
JFI_2024b.pdf
  Ограничен приступ
450.77 kBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.