Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/21581
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.contributor.authorBodić, Aleksandar-
dc.contributor.authorRakić, Dragan-
dc.contributor.authorMilovanović, Vladimir-
dc.date.accessioned2024-11-21T13:18:37Z-
dc.date.available2024-11-21T13:18:37Z-
dc.date.issued2024-
dc.identifier.isbn978-3-031-71418-4en_US
dc.identifier.issn2367-3370en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/21581-
dc.description.abstractTraditional methods for analysing geotechnical structures typically rely on the deterministic approach, where the primary focus is on determining factor of safety (FoS) for structure. However, this approach may yield different failure probabilities despite similar values of safety factors due to conservative assumptions and unreliable initial data. This paper integrates reliability approach, finite element method (FEM), and machine learning (ML) to enhance safety assessments in geotechnical engineering. In this paper, an example of a uniaxial compression test of specimen is considered. Numerical simulations are conducted using PAK software. The parameters of the material model are generated according to the Gaussian (normal) distribution and 10 000 calculations are created based on these distributions. Results obtained from numerical simulations are used to train a neural network, which classifies calculation as converged or diverged, i.e., a structure as stable or unstable based on the material model parameters. This approach reduces the need for an extensive number of time-consuming numerical simulations, which can be a significant resource drain in engineering applications. It can be concluded that, by coupling FEM and ML, safety of the structures can be effectively analysed using the concept of reliability.en_US
dc.language.isoenen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.titleReliability Approach for Structural Safety Assessment Using Finite Element Method and Machine Learningen_US
dc.typeconferenceObjecten_US
dc.identifier.doi10.1007/978-3-031-71419-1_31en_US
dc.source.conferenceDisruptive Information Technologies for a Smart Societyen_US
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

362

Број преузимања

9

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
Bodic_ReliabilityApproachUsingFEMandML_v1.pdf
  Ограничен приступ
583.95 kBAdobe PDFПогледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons