Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/21656
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.contributor.authorGrujic, Ivan-
dc.contributor.authorDavinić, Aleksandar-
dc.contributor.authorStojanovic, Nadica-
dc.contributor.authorGlišović, Jasna-
dc.contributor.authorMiloradović, Danijela-
dc.contributor.editorTomić, Milan-
dc.date.accessioned2024-11-27T10:03:28Z-
dc.date.available2024-11-27T10:03:28Z-
dc.date.issued2017-
dc.identifier.issn0354-9496en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/21656-
dc.descriptionThis paper presents a part of the research performed within the framework of the project TR35041 financed by the ministry of education, science and technological development of the Republic of Serbia.en_US
dc.description.abstractConstant tightening of legal norms requires constant research activities relating to the reduction of exhaust emissions. So far, experiments were almost always used to determine the concentration of a harmful product in the exhaust gases. Thanks to progress in technology and computational intelligence, it is possible to approach this problem in a more elegant way. By developing an artificial neural network (ANN) model, it is possible to predict concentration of some harmful products in exhaust gases with great accuracy. It is proven that, with ANN, something like this is possible by using an appropriate training tool, even for a very small number of baseline data.en_US
dc.language.isoenen_US
dc.publisherNaučno društvo za pogonske mašine, traktore i održavanjeen_US
dc.relationTR35041en_US
dc.subjectlegal normsen_US
dc.subjectreduction of exhaust emissionsen_US
dc.subjectneural networken_US
dc.subjectmodelen_US
dc.titleDetermination of influence parameters on concentration of carbon monoxide in exhaust gases by using artificial neural networks (ANN)en_US
dc.typearticleen_US
dc.description.versionPublisheden_US
dc.type.versionPublishedVersionen_US
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

293

Број преузимања

3

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
Ivan JUMTO 2017.pdf
  Ограничен приступ
2.65 MBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.