Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/21754
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.contributor.authorKemiveš, Aleksandar-
dc.contributor.authorRandjelovic, Milan-
dc.contributor.authorBarjaktarović, Lidija-
dc.contributor.authorĐikanović, Predrag-
dc.contributor.authorCabarkapa, Milan-
dc.contributor.authorRandjelovic, Dragan-
dc.date.accessioned2024-12-10T09:56:53Z-
dc.date.available2024-12-10T09:56:53Z-
dc.date.issued2024-
dc.identifier.issn2073-8994en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/21754-
dc.description.abstractThe advancement of technology has led humanity into the era of the information society, where information drives progress and knowledge is the most valuable resource. This era involves vast amounts of data, from which stored knowledge should be effectively extracted for use. In this context, machine learning is a growing trend used to address various challenges across different fields of human activity. This paper proposes an ensemble model that leverages multiple machine learning algorithms to determine the key factors for successful foreign direct investment, which simultaneously enables the prediction of this process using data from the World Bank, covering 60 countries. This innovative model, which adds to scientific and research knowledge, employs two sets of methods—binary regression and feature selection—combined in a stacking ensemble using a classification algorithm as the combiner to enable asymmetric optimization. The proposed predictive ensemble model has been tested in a case study using a dataset compiled from World Bank data across countries worldwide. The model demonstrates better performance than each of the individual algorithms integrated into it, which are considered state-of-the-art in these methodologies. Additionally, the findings highlight three key factors for foreign direct investment from the dataset, leading to the development of an optimized prediction formula.en_US
dc.language.isoenen_US
dc.relation.ispartofSymmetryen_US
dc.subjectmachine learningen_US
dc.subjectbinary regressionen_US
dc.subjectclassificationen_US
dc.subjectfeature selectionen_US
dc.subjectstacking ensemble methoden_US
dc.subjectpredictionen_US
dc.subjectindicators of successful foreign direct investmentsen_US
dc.titleIdentifying Key Indicators for Successful Foreign Direct Investment through Asymmetric Optimization Using Machine Learningen_US
dc.typearticleen_US
dc.description.versionPublisheden_US
dc.identifier.doi10.3390/sym16101346en_US
dc.type.versionPublishedVersionen_US
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

306

Број преузимања

6

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
symmetry-16-01346.pdf843.77 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.