Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/21848
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.contributor.authorSavovic, Svetislav-
dc.contributor.authorIvanović, Miloš-
dc.contributor.authorDrljača, Branko-
dc.contributor.authorSimović, Ana-
dc.date.accessioned2024-12-20T07:52:21Z-
dc.date.available2024-12-20T07:52:21Z-
dc.date.issued2024-
dc.identifier.issn2075-1680en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/21848-
dc.description.abstractThis study employs a novel physics-informed neural networks (PINN) approach, standard explicit finite difference method (EFDM) and Chen-Charpentier et al.’s finite difference method (CCFDM) to tackle the one-dimensional Sine-Gordon equation (SGE). Two test problems with known analytical solutions are investigated to demonstrate the effectiveness of these techniques. While the three employed approaches demonstrate strong agreement, our analysis reveals that the EFDM results are in the best agreement with the analytical solutions. Given the consistent agreement between the numerical results from the EFDM, CCFDM, PINN approach and the analytical solutions, all three methods are recommended as competitive options. The solution techniques employed in this study can be a valuable asset for present and future model developers engaged in various nonlinear physical wave phenomena, such as propagation of solitons in optical fibers.en_US
dc.language.isoen_USen_US
dc.relation.ispartofAxiomsen_US
dc.subjectPhysics Informed Neural Netowrksen_US
dc.subjectSine-Gordon equationen_US
dc.subjectnonlinear wave phenomenaen_US
dc.subjectsolitonsen_US
dc.subjectfinite difference methoden_US
dc.titleNumerical Solution of the Sine–Gordon Equation by Novel Physics-Informed Neural Networks and Two Different Finite Difference Methodsen_US
dc.typearticleen_US
dc.description.versionAuthor's versionen_US
dc.identifier.doi10.3390/axioms13120872en_US
dc.type.versionCorrectedVersionen_US
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

544

Број преузимања

43

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
Revised Manuscript_Savovic_Axioms_1.pdf1.03 MBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.