Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/21851
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.contributor.authorSun, Yawei-
dc.contributor.authorTao, Hongfeng-
dc.contributor.authorStojanović, Vladimir-
dc.date.accessioned2024-12-23T11:32:58Z-
dc.date.available2024-12-23T11:32:58Z-
dc.date.issued2024-
dc.identifier.issn0019-0578en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/21851-
dc.description.abstractWhen the fault diagnosis datasets contains noise disturbances, small samples, compound faults, and mixed conditions, the feature extraction capability of the neural network will face significant challenges. This paper proposes an end-to-end multiscale residual network with parallel attention mechanism to address the above complex problems. Firstly, the adaptive mixing pooling method is employed to facilitate the model’s ability to retain effective feature information present within the timing signal. Then, we propose parallel attention mechanism that can obtain the attention information in both channel and temporal domain of the input features. Moreover, the multi-scale feature parallel fusion can better capture effective information contained in different scale features. The experimental results demonstrate that the proposed model attains 99.67%, 99.83%, 99.71% and 99.70% accuracy on four datasets comprising small samples. Furthermore, the accuracy of 60% to 80% is sustained when the noise level is increased to 0dB.en_US
dc.language.isoenen_US
dc.relation451-03-65/2024-03/200108en_US
dc.relation.ispartofISA Transactionsen_US
dc.subjectfault diagnosisen_US
dc.subjectsmall samplesen_US
dc.subjectadaptive mixing poolingen_US
dc.subjectparallel attention mechanismen_US
dc.subjectmulti-scale feature parallel fusionen_US
dc.titleEnd-to-end multi-scale residual network with parallel attention mechanism for fault diagnosis under noise and small samplesen_US
dc.typearticleen_US
dc.description.versionPublisheden_US
dc.identifier.doi10.1016/j.isatra.2024.12.023en_US
dc.type.versionPublishedVersionen_US
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

244

Број преузимања

7

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
ISA_2024.pdf
  Ограничен приступ
246.77 kBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.