Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/22325
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCekovic Djordjevic, Jelena-
dc.contributor.authorSimovic, Aleksandra-
dc.contributor.authorSavic, Dragana-
dc.contributor.authorProdanovic, Tijana-
dc.contributor.authorZivojinovic, Suzana-
dc.contributor.authorErić, Milan-
dc.contributor.authorStefanovic, Miladin-
dc.date.accessioned2025-05-19T08:07:50Z-
dc.date.available2025-05-19T08:07:50Z-
dc.date.issued2025-
dc.identifier.citationJelena Cekovic Djordjevic, Aleksandra Simović, Dragana Savić, Tijana Prodanović, Suzana Zivojinović, Milan Erić, Miladin Stefanović, Aleksandar Đordjević (2025). QUALITY-DRIVEN MACHINE LEARNING FOR NEONATAL CARE: PREDICTING NECROTIZING ENTEROCOLITIS. Quality Festival 2025, 15 International Quality Conference, 21-23 May 2025. Kragujeavc, 315-323, ISBN 978-86-6335-121-9. DOI 10.24874/QF.25.043en_US
dc.identifier.isbn978-86-6335-121-9en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/22325-
dc.description.abstractEnsuring the quality and reliability of predictive models in neonatal healthcare is crucial for improving early disease detection and clinical decision-making. This study investigates the application of machine learning (ML) algorithms for predicting necrotizing enterocolitis (NEC) in neonatal populations, focusing on model selection, performance evaluation, and quality assessment. A dataset of 207 neonates, including 143 preterm and 64 term infants, was analyzed using six ML classification models: Logistic Regression (LR), Linear Discriminant Analysis (LDA), KNearest Neighbors (KNN), Classification and Regression Trees (CART), Naïve Bayes (NB), and Support Vector Machine (SVM). Model performance was assessed using accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUROC). This study underscores the potential of machine learning in neonatal care and suggests that a hybrid approach combining highrecall and high-precision models could optimize NEC detection. Future research should focus on ensemble learning techniques and clinical validation to further enhance predictive performance and practical implementation in neonatal intensive care units.en_US
dc.language.isoenen_US
dc.publisherFaculty of Engineering, University of Kragujevacen_US
dc.subjectmachine learningen_US
dc.subjectdata-driven analysesen_US
dc.subjectpredictive modelingen_US
dc.subjectquality assessmenten_US
dc.subjectreliabilityen_US
dc.subjecthealthcare analyticsen_US
dc.subjectneonatal careen_US
dc.subjectnecrotizing enterocolitis (NEC)en_US
dc.titleQUALITY-DRIVEN MACHINE LEARNING FOR NEONATAL CARE: PREDICTING NECROTIZING ENTEROCOLITISen_US
dc.typeconferenceObjecten_US
dc.description.versionPublisheden_US
dc.identifier.doi10.24874/QF.25.043en_US
dc.type.versionPublishedVersionen_US
dc.source.conferenceQuality Festival 2025 - 15 International Quality Conferenceen_US
Appears in Collections:Faculty of Engineering, Kragujevac

Page views(s)

106

Downloads(s)

19

Files in This Item:
File Description SizeFormat 
28.pdf647.76 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.