Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/23022
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMilivojević-Danas, Milica-
dc.contributor.authorKRATICA, JOZEF-
dc.date.accessioned2026-02-12T12:03:48Z-
dc.date.available2026-02-12T12:03:48Z-
dc.date.issued2025-
dc.identifier.isbn978-86-7680-496-2en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/23022-
dc.description.abstractIn this paper is studied the distance-edge-monitoring problem which is recently introduced, for special class of graphs, named complete split graphs K∗ k,n−k. We are stated and proved formula for the distance edge-monitoring number for this graphs and its exact value is equal to k.en_US
dc.language.isoen_USen_US
dc.publisherUniversity of Belgrade - Faculty of Organizational Sciences Jove Ilića 154, Belgrade, Serbiaen_US
dc.subjectDistance-edge-monitoring numberen_US
dc.subjectcomplete split graphsen_US
dc.subjectgraph theoryen_US
dc.subjectdiscrete mathematicsen_US
dc.titleDISTANCE-EDGE-MONITORING NUMBER OF COMPLETE SPLIT GRAPHSen_US
dc.typeconferenceObjecten_US
dc.source.conference52nd International Symposium on Operational Researcen_US
Appears in Collections:Faculty of Engineering, Kragujevac

Page views(s)

16

Downloads(s)

2

Files in This Item:
File Description SizeFormat 
symopis-paper-template-EN.pdf
  Restricted Access
296.09 kBAdobe PDFView/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.