Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/8399
Назив: Patient comfort level prediction during transport using artificial neural network
Аутори: Jovanovic, Zeljko
Blagojevic M.
Jankovic, Dragan
Peulic, Aleksandar
Датум издавања: 2019
Сажетак: © TÜBİTAK Since patient comfort during transport is a matter of paramount importance, this paper aims to determine the possibilities of applying neural networks for its prediction and monitoring. Specific objectives of the research include monitoring and predicting patient transport comfort, with subjective assessment of comfort by medical personnel. An original Android application that collects signals from an accelerometer and a GPS sensor was used with the aim of achieving the research goals. The collected signals were processed and a total of twelve parameters were calculated. A multilayer perceptron was created in the proposed research. The evaluation results indicate acceptable accuracy and give the possibility to apply the same model to the next patient transport. The root mean square error was 0.0215 and the overall confusion matrix prediction accuracy was 90.07%. Moreover, the results were validated in real usage. The limitations and future work are highlighted.
URI: https://scidar.kg.ac.rs/handle/123456789/8399
Тип: article
DOI: 10.3906/elk-1807-258
ISSN: 1300-0632
SCOPUS: 2-s2.0-85072603479
Налази се у колекцијама:Faculty of Engineering, Kragujevac
Faculty of Technical Sciences, Čačak

Број прегледа


Број преузимања


Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
10.3906-elk-1807-258.pdf2.22 MBAdobe PDFСличица

Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons