Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/8575
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.rights.licenseopenAccess-
dc.contributor.authorPeko I.-
dc.contributor.authorNedic, Bogdan-
dc.contributor.authorĐorđević, Aleksandar-
dc.contributor.authorVeza I.-
dc.date.accessioned2020-09-19T16:07:50Z-
dc.date.available2020-09-19T16:07:50Z-
dc.date.issued2018-
dc.identifier.issn1330-3651-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/8575-
dc.description.abstract© 2018, Strojarski Facultet. All rights reserved. In this paper Artificial Neural Network (ANN) model was developed for prediction of kerf width in plasma jet metal cutting process. Process parameters whose influence was analyzed are cutting height, cutting speed and arc current. An L18 (21x37) Taguchi orthogonal array experiment was conducted on aluminium sheet of 3 mm thickness. Using the experimental data a feed – forward backpropagation artificial neural network model was developed. After the prediction accuracy of the developed model was verified, the model was used to generate plots that show influence of process parameters and their interactions on analzyed kerf width and to get conlusions about process parameters values that lead to minimal kerf width.-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceTehnicki Vjesnik-
dc.titleModelling of Kerf width in plasma jet metal cutting process using ANN approach-
dc.typearticle-
dc.identifier.doi10.17559/TV-20161024093323-
dc.identifier.scopus2-s2.0-85045892944-
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

740

Број преузимања

26

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
10.17559-TV-20161024093323.pdf1.31 MBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons