Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/9162
Full metadata record
DC FieldValueLanguage
dc.rights.licenseopenAccess-
dc.contributor.authorDizdarevic M.-
dc.contributor.authorTimotijević, Marinko-
dc.contributor.authorŽivaljević R.-
dc.date.accessioned2020-09-19T17:37:10Z-
dc.date.available2020-09-19T17:37:10Z-
dc.date.issued2016-
dc.identifier.issn0350-1302-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/9162-
dc.description.abstractConway and Lagarias observed that a triangular region T(m) in a hexagonal lattice admits a signed tiling by three-in-line polyominoes (tribones) if and only if ∈ 2 {9d-1, 9d}d∈N. We apply the theory of Gröbner bases over integers to show that T(m) admits a signed tiling by n-in-line polyominoes (n-bones) if and only if m ∈ {dn2 - 1, dn2}d∈N. Explicit description of the Gröbner basis allows us to calculate the 'Gröbner discrete volume' of a lattice region by applying the division algorithm to its 'Newton polynomial'. Among immediate consequences is a description of the tile homology group for the n-in-line polyomino.-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourcePublications de l'Institut Mathematique-
dc.titleSigned polyomino tilings by n-in-line polyominoes and Gröbner bases-
dc.typearticle-
dc.identifier.doi10.2298/PIM1613031M-
dc.identifier.scopus2-s2.0-84971484523-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

429

Downloads(s)

14

Files in This Item:
File Description SizeFormat 
10.2298-PIM1613031M.pdf217.08 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons