Please use this identifier to cite or link to this item:
https://scidar.kg.ac.rs/handle/123456789/9162
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.rights.license | openAccess | - |
dc.contributor.author | Dizdarevic M. | - |
dc.contributor.author | Timotijević, Marinko | - |
dc.contributor.author | Živaljević R. | - |
dc.date.accessioned | 2020-09-19T17:37:10Z | - |
dc.date.available | 2020-09-19T17:37:10Z | - |
dc.date.issued | 2016 | - |
dc.identifier.issn | 0350-1302 | - |
dc.identifier.uri | https://scidar.kg.ac.rs/handle/123456789/9162 | - |
dc.description.abstract | Conway and Lagarias observed that a triangular region T(m) in a hexagonal lattice admits a signed tiling by three-in-line polyominoes (tribones) if and only if ∈ 2 {9d-1, 9d}d∈N. We apply the theory of Gröbner bases over integers to show that T(m) admits a signed tiling by n-in-line polyominoes (n-bones) if and only if m ∈ {dn2 - 1, dn2}d∈N. Explicit description of the Gröbner basis allows us to calculate the 'Gröbner discrete volume' of a lattice region by applying the division algorithm to its 'Newton polynomial'. Among immediate consequences is a description of the tile homology group for the n-in-line polyomino. | - |
dc.rights | info:eu-repo/semantics/openAccess | - |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.source | Publications de l'Institut Mathematique | - |
dc.title | Signed polyomino tilings by n-in-line polyominoes and Gröbner bases | - |
dc.type | article | - |
dc.identifier.doi | 10.2298/PIM1613031M | - |
dc.identifier.scopus | 2-s2.0-84971484523 | - |
Appears in Collections: | Faculty of Science, Kragujevac |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.2298-PIM1613031M.pdf | 217.08 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License