Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/9162
Title: Signed polyomino tilings by n-in-line polyominoes and Gröbner bases
Authors: Dizdarevic M.
Timotijević, Marinko
Živaljević R.
Issue Date: 2016
Abstract: Conway and Lagarias observed that a triangular region T(m) in a hexagonal lattice admits a signed tiling by three-in-line polyominoes (tribones) if and only if ∈ 2 {9d-1, 9d}d∈N. We apply the theory of Gröbner bases over integers to show that T(m) admits a signed tiling by n-in-line polyominoes (n-bones) if and only if m ∈ {dn2 - 1, dn2}d∈N. Explicit description of the Gröbner basis allows us to calculate the 'Gröbner discrete volume' of a lattice region by applying the division algorithm to its 'Newton polynomial'. Among immediate consequences is a description of the tile homology group for the n-in-line polyomino.
URI: https://scidar.kg.ac.rs/handle/123456789/9162
Type: article
DOI: 10.2298/PIM1613031M
ISSN: 0350-1302
SCOPUS: 2-s2.0-84971484523
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

435

Downloads(s)

14

Files in This Item:
File Description SizeFormat 
10.2298-PIM1613031M.pdf217.08 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons