Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/9440
Full metadata record
DC FieldValueLanguage
dc.rights.licenseopenAccess-
dc.contributor.authorPikula, Milenko-
dc.contributor.authorVladičić V.-
dc.contributor.authorMarkovic, Olivera-
dc.date.accessioned2020-09-19T18:17:48Z-
dc.date.available2020-09-19T18:17:48Z-
dc.date.issued2013-
dc.identifier.issn0354-5180-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/9440-
dc.description.abstractThe paper is devoted to study of the inverse problem of the boundary spectral assignment of the Sturm-Liouville with a delay. -y″(x) + q(x)y(α · x) = λy(x); q ∈ AC[0; π];α ∈ (0, 1] (1) with separated boundary conditions: y(0) = y(π) = 0 (2) y(0) = y′(π) = 0 (3) It is argued that if the sequence of eigenvalues is given λn(1) n and λn(2) n tasks (1-2) and (1-3) respectively, then the delay factor α ∈ (0, 1) and the potential q ∈ AC[0, π] are unambiguous. The potential q is composed by means of trigonometric Fourier coefficients. The method can be easily transferred to the case of α = 1 i.e. to the classical Sturm-Liouville problem.-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceFilomat-
dc.titleA solution to the inverse problem for the Sturm-Liouville-type equation with a delay-
dc.typearticle-
dc.identifier.doi10.2298/FIL1307237P-
dc.identifier.scopus2-s2.0-84888088347-
Appears in Collections:Faculty of Teacher Education, Užice

Page views(s)

524

Downloads(s)

10

Files in This Item:
File Description SizeFormat 
10.2298-FIL1307237P.pdf81.24 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons