Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/9589
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.rights.licenseopenAccess-
dc.contributor.authorDehmer M.-
dc.contributor.authorGrabner M.-
dc.contributor.authorFurtula, Boris-
dc.date.accessioned2020-09-19T18:39:12Z-
dc.date.available2020-09-19T18:39:12Z-
dc.date.issued2012-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/9589-
dc.description.abstractIn chemistry and computational biology, structural graph descriptors have been proven essential for characterizing the structure of chemical and biological networks. It has also been demonstrated that they are useful to derive empirical models for structure-oriented drug design. However, from a more general (complex network-oriented) point of view, investigating mathematical properties of structural descriptors, such as their uniqueness and structural interpretation, is also important for an in-depth understanding of the underlying methods. In this paper, we emphasize the evaluation of the uniqueness of distance, degree and eigenvalue-based measures. Among these are measures that have been recently investigated extensively. We report numerical results using chemical and exhaustively generated graphs and also investigate correlations between the measures. © 2012 Dehmer et al.-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourcePLoS ONE-
dc.titleStructural discrimination of networks by using distance, degree and eigenvalue-based measures-
dc.typearticle-
dc.identifier.doi10.1371/journal.pone.0038564-
dc.identifier.scopus2-s2.0-84863691500-
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

871

Број преузимања

25

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
10.1371-journal.pone.0038564.pdf1.09 MBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons