Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/9923
Full metadata record
DC FieldValueLanguage
dc.rights.licenseopenAccess-
dc.rights.licenseAttribution 3.0 United States*
dc.contributor.authorHedrih K.-
dc.contributor.authorVeljovic, Ljiljana-
dc.date.accessioned2021-04-20T14:24:54Z-
dc.date.available2021-04-20T14:24:54Z-
dc.date.issued2011-
dc.identifier.issn1024-123X-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/9923-
dc.description.abstractVector method based on mass moment vectors and vector rotators coupled for pole and oriented axes is used for obtaining vector expressions for kinetic pressures on the shaft bearings of a rigid body dynamics with coupled rotations around axes without intersection. Mass inertia moment vectors and corresponding deviational vector components for pole and oriented axis are defined by K. Hedrih in 1991. These kinematical vectors rotators are defined for a system with two degrees of freedom as well as for rheonomic system with two degrees of mobility and one degree of freedom and coupled rotations around two coupled axes without intersection as well as their angular velocities and intensity. As an example of defined dynamics, we take into consideration a heavy gyrorotor disk with one degree of freedom and coupled rotations when one component of rotation is programmed by constant angular velocity. For this system with nonlinear dynamics, a series of tree parametric transformations of system nonlinear dynamics are presented. Some graphical visualization of vector rotators properties are presented too. © 2011 Katica R. (Stevanovi) Hedrih and Ljiljana Veljovi.-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourceMathematical Problems in Engineering-
dc.titleVector rotators of rigid body dynamics with coupled rotations around axes without intersection-
dc.typearticle-
dc.identifier.doi10.1155/2011/351269-
dc.identifier.scopus2-s2.0-81555195275-
Appears in Collections:Faculty of Engineering, Kragujevac

Page views(s)

243

Downloads(s)

5

Files in This Item:
File Description SizeFormat 
351269.pdf3.58 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons