Please use this identifier to cite or link to this item:
Title: Hydrolysis of the amide bond in N-acetylated l-methionylglycine catalyzed by various platinum(II) complexes under physiologically relevant conditions
Authors: Zivkovic, Marija
Ašanin, Darko
Rajković, Snežana
Djuran, Miloš
Issue Date: 2011
Abstract: The hydrolytic reactions between various Pt(II) complexes of the type [Pt(L)Cl2] and [Pt(L)(CBDCA-O,O′] (L is ethylenediamine, en; (±)-trans-1,2-diaminocyclohexane, dach; (±)-1,2-propylenediamine, 1,2-pn and CBDCA is the 1,1-cyclobutanedicarboxylic anion) and the N-acetylated l-methionylglycine dipeptide (MeCOMet-Gly) were studied by 1H NMR spectroscopy. All reactions were realized at 37 °C with equimolar amounts of the Pt(II) complex and the dipeptide at pH 7.40 in 50 mM phosphate buffer in D2O. Under these experimental conditions, a very slow cleavage of the Met-Gly amide bond was observed and this hydrolytic reaction proceeds through the intermediate [Pt(L)(H2O)(MeCOMet-Gly-S)]+ complex. In general, it can be concluded that faster hydrolytic cleavage of the MeCOMet-Gly dipeptide was observed in the reaction with the chloride complex than with corresponding CBDCA Pt(II) complexes. The steric effects of the Pt(II) complex on the hydrolytic cleavage of the amide bond in the MeCOMet-Gly dipeptide were also investigated by 1H NMR spectroscopy. It was found that the rate of hydrolysis decreases as the steric bulk of the CBDCA and chlorido Pt(II) complexes increase (en > 1,2-pn > dach). These results contribute to a better understanding of the toxic side effects of Pt(II) antitumor drugs and should be taken into consideration when designing new potential Pt(II) antitumor drugs with preferably low toxic side effects. © 2011 Elsevier Ltd. All rights reserved.
Type: article
DOI: 10.1016/j.poly.2010.12.039
ISSN: 0277-5387
SCOPUS: 2-s2.0-79953195088
Appears in Collections:Faculty of Medical Sciences, Kragujevac
Faculty of Science, Kragujevac
Institute for Information Technologies, Kragujevac

Page views(s)




Files in This Item:
File Description SizeFormat 
  Restricted Access
29.86 kBAdobe PDFThumbnail

Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.