Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/10895
Пун извештај метаподатака
Поље DC-а | Вредност | Језик |
---|---|---|
dc.rights.license | restrictedAccess | - |
dc.contributor.author | Kojić M. | - |
dc.contributor.author | Milosevic, Miljan | - |
dc.contributor.author | Dragojević Simić V. | - |
dc.contributor.author | Geroski, Vladimir | - |
dc.contributor.author | Ziemys, Arturas | - |
dc.contributor.author | Filipovic, Nenad | - |
dc.contributor.author | Ferrari M. | - |
dc.date.accessioned | 2021-04-20T16:57:25Z | - |
dc.date.available | 2021-04-20T16:57:25Z | - |
dc.date.issued | 2019 | - |
dc.identifier.issn | 0010-4825 | - |
dc.identifier.uri | https://scidar.kg.ac.rs/handle/123456789/10895 | - |
dc.description.abstract | © 2019 Basic functions of living organisms are governed by the nervous system through bidirectional signals transmitted from the brain to neural networks. These signals are similar to electrical waves. In electrophysiology the goal is to study the electrical properties of biological cells and tissues, and the transmission of signals. From a physics perspective, there exists a field of electrical potential within the living body, the nervous system, extracellular space and cells. Electrophysiological problems can be investigated experimentally and also theoretically by developing appropriate mathematical or computational models. Due to the enormous complexity of biological systems, it would be almost impossible to establish a detailed computational model of the electrical field, even for only a single organ (e.g. heart), including the entirety of cells comprising the neural network. In order to make computational models feasible for practical applications, we here introduce the concept of smeared fields, which represents a generalization of the previously formulated multiscale smeared methodology for mass transport in blood vessels, lymph, and tissue. We demonstrate the accuracy of the smeared finite element computational models for the electric field in numerical examples. The electrical field is further coupled with ionic mass transport within tissue composed of interstitial spaces extracellularly and by cytoplasm and organelles intracellularly. The proposed methodology, which couples electrophysiology and molecular ionic transport, is applicable to a variety of biological systems. | - |
dc.rights | info:eu-repo/semantics/restrictedAccess | - |
dc.rights | info:eu-repo/semantics/restrictedAccess | - |
dc.source | Computers in Biology and Medicine | - |
dc.title | Smeared multiscale finite element model for electrophysiology and ionic transport in biological tissue | - |
dc.type | article | - |
dc.identifier.doi | 10.1016/j.compbiomed.2019.03.023 | - |
dc.identifier.scopus | 2-s2.0-85064435240 | - |
Налази се у колекцијама: | Faculty of Engineering, Kragujevac Institute for Information Technologies, Kragujevac |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
PaperMissing.pdf Ограничен приступ | 29.86 kB | Adobe PDF | ![]() Погледајте |
Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.