Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/12130
Title: Bounds for laplacian-type graph energies
Authors: Gutman, Ivan
Milovanovíc E.
Milovanović I.
Issue Date: 2015
Abstract: © 2015 Miskolc University Press. Let G be an undirected simple and connected graph with n vertices (n ≥ 3) and m edges. Denote by μ1 ≥ μ2 ≥ ... ≥ μn-1 > μn = 0, γ1 ≥ γ2 ≥ ... ≥ γn, and ρ1 ≥ ρ2 ≥ ... ≥ ρn-1 > ρn = 0, respectively, the Laplacian, signless Laplacian, and normalized Laplacian eigenvalues of G. The Laplacian energy, signless Laplacian energy, and normalized Laplacian energy of G are defined as LE = Σni=1 |μi-2m/n|, SLE = Σni=1 |γi-2m/n|, and NLE = Σni=1 |ρi-1|, respectively. Lower bounds for LE, SLE, and NLE are obtained.
URI: https://scidar.kg.ac.rs/handle/123456789/12130
Type: article
DOI: 10.18514/mmn.2015.1140
ISSN: 1787-2405
SCOPUS: 2-s2.0-84939237698
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

491

Downloads(s)

83

Files in This Item:
File Description SizeFormat 
10.18514-mmn.2015.1140.pdf775.46 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons