Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/12702
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.rights.licenserestrictedAccess-
dc.contributor.authorDjukic, Tijana-
dc.contributor.authorArsić, Branko-
dc.contributor.authorDjorovic S.-
dc.contributor.authorFilipovic, Nenad-
dc.contributor.authorKoncar, Igor-
dc.date.accessioned2021-04-20T21:30:47Z-
dc.date.available2021-04-20T21:30:47Z-
dc.date.issued2020-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/12702-
dc.description.abstract© 2020 IEEE. It is important to investigate the state of the arteries in order to detect atherosclerotic plaques in the early stage and then treat them appropriately. One of the diagnostic techniques is the ultrasound (US) examination. In order to obtain a more detailed and comprehensive overview of the state of the patient's carotid artery, 3D reconstruction using the available 2D cross-sections can be performed. In this paper, deep learning is used for the automatic segmentation of US images, and this data is then used to reconstruct the 3D model of the patient-specific carotid artery. The validation of the proposed approach is performed by comparing two relevant clinical parameters for accessing the severity of vessel stenosis - the plaque length and the percentage of stenosis. Good validation results demonstrate that this method is capable of accurately performing segmentation of the lumen of carotid artery from US images and thus it can be a useful tool for assessing the state of the arteries in clinical diagnostics.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceProceedings - IEEE 20th International Conference on Bioinformatics and Bioengineering, BIBE 2020-
dc.titleValidation of the machine learning approach for 3D reconstruction of carotid artery from ultrasound imaging-
dc.typeconferenceObject-
dc.identifier.doi10.1109/BIBE50027.2020.00134-
dc.identifier.scopus2-s2.0-85099601453-
Налази се у колекцијама:Faculty of Engineering, Kragujevac
Faculty of Science, Kragujevac
Institute for Information Technologies, Kragujevac

Број прегледа

2033

Број преузимања

26

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.