Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/15783
Title: A Deep Learning Model for Automatic Detection and Classification of Disc Herniation in Magnetic Resonance Images
Authors: Sustersic, Tijana
Rankovic, Vesna
Milovanović, Vladimir
Kovacevic, Vojin
Rasulić L.
Filipovic, Nenad
Issue Date: 2022
Abstract: Localization of lumbar discs in magnetic resonance imaging (MRI) is a challenging task, due to a vast range of shape, size, number, and appearance of discs and vertebrae. Based on a review of the cutting-edge methods, the majority of applied techniques are either semi-automatic, extremely sensitive to change in parameters, or involve further modification of the results. All of the above represents a motivation for implementing deep learning-based approaches for automatic segmentation and classification of disc herniation in MR images. This paper proposes a complete automated process based on deep learning to diagnose disc herniation. The methodology includes several steps starting from segmentation of region of interest (ROI), in this case disc area, bounding box cropping and enhancement of ROI, after which the image is classified based on convolutional neural network (CNN) into adequate classes (healthy, bulge, central, right or left herniation for axial view and healthy, L4/L5, L5/S1 level of herniation in sagittal view). The results show high accuracy of segmentation for both axial view (dice = 0.961, IOU = 0.925) and sagittal view (dice = 0.897, IOU = 0.813) images. After cropping and enhancing the region of interest, accuracy of classification was 0.87 for axial view images and 0.91 for sagittal view images. Comparison with the literature shows that proposed methodology outperforms state-of-the-art results when it comes to multiclassification problems. A fully automated decision support system for disc hernia diagnosis can assist in generating diagnostic findings in a timely manner, while human mistakes caused by cognitive overload and procedure-related errors can be reduced.
URI: https://scidar.kg.ac.rs/handle/123456789/15783
Type: article
DOI: 10.1109/JBHI.2022.3209585
ISSN: 2168-2194
SCOPUS: 2-s2.0-85139498992
Appears in Collections:Faculty of Engineering, Kragujevac
Faculty of Medical Sciences, Kragujevac

Page views(s)

117

Downloads(s)

12

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.