Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/16159
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNeghina, Mihai-
dc.contributor.authorPetruse, Radu Emanuil-
dc.contributor.authorCukovic, Sasa-
dc.contributor.authorSchiau C.-
dc.contributor.authorFilipovic, Nenad-
dc.date.accessioned2023-02-08T16:36:21Z-
dc.date.available2023-02-08T16:36:21Z-
dc.date.issued2021-
dc.identifier.issn--
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/16159-
dc.description.abstractAssessment of the spinal disorders is a notoriously difficult problem, even in controlled environments where the patients are instructed to stand upright. The method presented here considers the analysis of the mathematical curvature of the scaled and interpolated spinal line, in both the sagittal and frontal planes. Although the number of assumptions for spine normality is kept to a (reasonable) minimum, we demonstrate good detection of sharp or otherwise unnatural local bending in adolescent spinal alignments.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceBIBE 2021 - 21st IEEE International Conference on BioInformatics and BioEngineering, Proceedings-
dc.titleAutomatic Curvature Analysis for Finely Interpolated Spinal Curves-
dc.typeconferenceObject-
dc.identifier.doi10.1109/BIBE52308.2021.9635424-
dc.identifier.scopus2-s2.0-85123714529-
Appears in Collections:Faculty of Engineering, Kragujevac
Institute for Information Technologies, Kragujevac

Page views(s)

713

Downloads(s)

4

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.