Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/18650
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDubonjic, Ljubisa-
dc.contributor.authorFilipovic, Vojislav-
dc.contributor.authorDjordjevic, Vladimir-
dc.date.accessioned2023-07-18T06:27:20Z-
dc.date.available2023-07-18T06:27:20Z-
dc.date.issued2016-
dc.identifier.isbn978-86-6125-170-2en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/18650-
dc.description.abstractIn paper considered outliers-robust recursive stochastic approximation algorithm for adaptive prediction of MIMO (multiple input multiple output) Hammerstein models. The static nonlinear block has polynomial form and linear block is output-error model. It is supposed that a priori known class of distributions to which belongs the real disturbance. In that situation we can use Huber`s methodology for design of robust algorithm which introduces nonlinear transformation of prediction error. Model transformation allows representation of unknown matrix parameters in the form of vector. The problem is not considered before in the field of adaptive prediction. Simulation study presents the practical behaviour of algorithm.en_US
dc.language.isoenen_US
dc.publisherFaculty of Electronic Engineering - Niš; Faculty of Mechanical Engineering - Niš; SAUM - Association of Serbia for Systems, Automatic Control and Measurements - Belgradeen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.sourceXIII International Conference on Systems, Automatic Control and Measurements - SAUM 2016en_US
dc.subjectHammerstein modelen_US
dc.subjectoutliersen_US
dc.subjectpredictionen_US
dc.subjectstochastic approximationen_US
dc.titleOutlier Robust One-Step-ahead Adaptive Predictor for Hammerstein Modelsen_US
dc.typeconferenceObjecten_US
dc.description.versionPublisheden_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Mechanical and Civil Engineering, Kraljevo

Page views(s)

349

Downloads(s)

16

Files in This Item:
File Description SizeFormat 
saum2016_dubonjic.pdf411.94 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.