Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/19056
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.contributor.authorWang, Rui-
dc.contributor.authorZhuang, Zhihe-
dc.contributor.authorTao, Hongfeng-
dc.contributor.authorPaszke, Wojciech-
dc.contributor.authorStojanović, Vladimir-
dc.date.accessioned2023-10-13T12:42:14Z-
dc.date.available2023-10-13T12:42:14Z-
dc.date.issued2023-
dc.identifier.issn0019-0578en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/19056-
dc.description.abstractThis paper proposes a Q-learning based fault estimation (FE) and fault tolerant control (FTC) scheme under iterative learning control (ILC) framework. Due to the repetitive demands on control actuators for repetitive tasks, ILC is sensitive to actuator faults. Moreover, unknown faults varying with both time and trial axes pose a challenge to the control performance of ILC. This paper introduces Q-learning algorithm for FE to continuously adjust the estimator and adapt the changing faults. Then, FTC is designed by adopting the norm-optimal iterative learning control (NOILC) framework, where the controller is adjusted based on the FE results from Q-learning to counteract the influence of faults. Finally, the simulation on the plant of a mobile robot verifies the effectiveness of the proposed algorithm.en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.sourceISA transactions-
dc.subjectIterative learning controlen_US
dc.subjectFault estimationen_US
dc.subjectFault tolerant controlen_US
dc.subjectQ-learningen_US
dc.subjectMIMO systemsen_US
dc.titleQ-learning based fault estimation and fault tolerant iterative learning control for MIMO systemsen_US
dc.typearticleen_US
dc.description.versionPublisheden_US
dc.identifier.doi10.1016/j.isatra.2023.07.043en_US
dc.type.versionPublishedVersionen_US
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

836

Број преузимања

18

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
wang2023qlearning.pdf
  Ограничен приступ
92.43 kBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.