Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/19056
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Rui-
dc.contributor.authorZhuang, Zhihe-
dc.contributor.authorTao, Hongfeng-
dc.contributor.authorPaszke, Wojciech-
dc.contributor.authorStojanović, Vladimir-
dc.date.accessioned2023-10-13T12:42:14Z-
dc.date.available2023-10-13T12:42:14Z-
dc.date.issued2023-
dc.identifier.issn0019-0578en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/19056-
dc.description.abstractThis paper proposes a Q-learning based fault estimation (FE) and fault tolerant control (FTC) scheme under iterative learning control (ILC) framework. Due to the repetitive demands on control actuators for repetitive tasks, ILC is sensitive to actuator faults. Moreover, unknown faults varying with both time and trial axes pose a challenge to the control performance of ILC. This paper introduces Q-learning algorithm for FE to continuously adjust the estimator and adapt the changing faults. Then, FTC is designed by adopting the norm-optimal iterative learning control (NOILC) framework, where the controller is adjusted based on the FE results from Q-learning to counteract the influence of faults. Finally, the simulation on the plant of a mobile robot verifies the effectiveness of the proposed algorithm.en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.sourceISA transactions-
dc.subjectIterative learning controlen_US
dc.subjectFault estimationen_US
dc.subjectFault tolerant controlen_US
dc.subjectQ-learningen_US
dc.subjectMIMO systemsen_US
dc.titleQ-learning based fault estimation and fault tolerant iterative learning control for MIMO systemsen_US
dc.typearticleen_US
dc.description.versionPublisheden_US
dc.identifier.doi10.1016/j.isatra.2023.07.043en_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Mechanical and Civil Engineering, Kraljevo

Page views(s)

415

Downloads(s)

15

Files in This Item:
File Description SizeFormat 
wang2023qlearning.pdf
  Restricted Access
92.43 kBAdobe PDFView/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.