Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/19271
Title: Thrombophilia Prediction Using Machine Learning Algorithms
Authors: Avdić, Aldina R.
Djordjević, Natasa Z.
Marovac, Ulfeta A.
Memić, Lejlija M.
Dolićanin, Zana Ć.
Babic, Goran
Issue Date: 2023
Abstract: Thrombophilia in pregnancy is the result of a complex interaction of inherited and acquired factors, which increase blood coagulation and consequently placental ischemic conditions. Early identification of risk of developing thrombophilia in pregnancy is crucial for implementing preventive measures and personalized therapy. In this study, we propose a novel approach for prediction of thrombophilia in pregnancy utilizing machine learning (ML) algorithms with a particular focus on neural networks. The research is done using a dataset consisting of demographic, lifestyle, and clinical information from a 35 pregnant woman (22 healthy and 13 with thrombophilia). These features are used to train and evaluate different ML models with neural networks and decision trees. The evaluation of the proposed approach involves cross-validation and performance metrics assessment. The results highlight the effectiveness of decision trees and neural networks in accurately predicting thrombophilia in pregnancy risk.
URI: https://scidar.kg.ac.rs/handle/123456789/19271
Type: conferenceObject
DOI: 10.46793/ICCBI23.140A
Appears in Collections:Faculty of Medical Sciences, Kragujevac

Page views(s)

442

Downloads(s)

35

Files in This Item:
File Description SizeFormat 
2nd-ICCBIKG- str 140-143.pdf339.84 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons