Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/19593
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.contributor.authorSong, Xiaona-
dc.contributor.authorWu, Nana-
dc.contributor.authorSong, Shuai-
dc.contributor.authorStojanović, Vladimir-
dc.date.accessioned2023-12-13T12:47:03Z-
dc.date.available2023-12-13T12:47:03Z-
dc.date.issued2023-
dc.identifier.issn1370-4621en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/19593-
dc.description.abstractIn this paper, event-triggered state estimation for reaction–diffusion neural networks (RDNNs) subject to Denial-of-Service (DoS) attacks is investigated. A switching-like event-triggered strategy (SETS) is proposed to handle intermittent DoS attacks, meanwhile, alleviate the burden of the network while preserving the accepted performance of the considered systems. Moreover, to obtain the unknown state, the corresponding state estimator of RDNNs is constructed. Furthermore, by virtue of a piecewise Lyapunov–Krasovskii functional method, sufficient conditions are obtained to ensure the exponential stability of the closed-loop systems. Finally, a numerical simulation is provided to demonstrate the feasibility and advantages of the obtained results.en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.sourceNeural Processing Letters-
dc.subjectReaction–diffusion neural networksen_US
dc.subjectswitching-like event-triggered strategyen_US
dc.subjectDenial-of-Service (DoS )attacksen_US
dc.subjectstate estimationen_US
dc.subjectpiecewise Lyapunov–Krasovskii functional methoden_US
dc.titleSwitching-Like Event-Triggered State Estimation for Reaction–Diffusion Neural Networks Against DoS Attacksen_US
dc.typearticleen_US
dc.description.versionPublisheden_US
dc.identifier.doi10.1007/s11063-023-11189-1en_US
dc.type.versionPublishedVersionen_US
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

764

Број преузимања

17

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
NPL_2023.pdf
  Ограничен приступ
71.29 kBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.