Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/19643
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFilipovic, Vojislav-
dc.contributor.authorStojanović, Vladimir-
dc.date.accessioned2023-12-15T13:31:41Z-
dc.date.available2023-12-15T13:31:41Z-
dc.date.issued2010-
dc.identifier.isbn978-86-6125-020-0en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/19643-
dc.description.abstractThe data in industry are corrupted with stochastic noise. In the real situations data contain outliers which can create problems to linear algorithms. Because, some kind of prevention must be taken into account. So are developed robust procedures for parameters estimation. In this paper we shall consider output error model and for robust parameters estimation the Masreliez-Martin’s robust filter is used. This filter is generalization of Kalman filter. In this paper we (i) eliminate the transformation factor (ii) nonlinear Masreliez-Martin prediction error transformation we replace with Huber function (iii) Fisher information is replaced with derivative of Huber’s function (iv) generation of input signal (experiment design) is based on ideas from predictive control Also, the intensive simulations are performed.en_US
dc.language.isoenen_US
dc.publisherFaculty of Electronic Engineering - Niš; Faculty of Mechanical Engineering - Niš; SAUM - Association of Serbia for Systems, Automatic Control and Measurements - Belgradeen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.sourceX Triennial International SAUM Conference 2010en_US
dc.subjectNongaussian noiseen_US
dc.subjectoutput error modelen_US
dc.subjectrobust Kalman filteren_US
dc.subjectexperiment designen_US
dc.titleRobust Kalman Filter as Parameter Estimator for Output Error Modelsen_US
dc.typeconferenceObjecten_US
dc.description.versionPublisheden_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Mechanical and Civil Engineering, Kraljevo

Page views(s)

328

Downloads(s)

7

Files in This Item:
File Description SizeFormat 
SAUM_2010 1.pdf782.37 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.