Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/20712
Пун извештај метаподатака
Поље DC-а | Вредност | Језик |
---|---|---|
dc.contributor.author | Prodanovic, Nikola | - |
dc.contributor.author | Dzunic, Dragan | - |
dc.contributor.author | Kočović, Vladimir | - |
dc.contributor.author | Djordjevic, Aleksandar | - |
dc.contributor.author | Prodanovic, Tijana | - |
dc.contributor.author | Petrovic Savic, Suzana | - |
dc.contributor.author | Devedzic, Goran | - |
dc.date.accessioned | 2024-05-07T10:36:44Z | - |
dc.date.available | 2024-05-07T10:36:44Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 979-8-3503-6172-8 | en_US |
dc.identifier.uri | https://scidar.kg.ac.rs/handle/123456789/20712 | - |
dc.description.abstract | Gait analysis through advanced technologies such as motion capture sensors and machine learning techniques enables a detailed study of body movement patterns, significantly contributing to a better understanding of health conditions and sports performance. The application of the Random Forest algorithm for identifying abnormal gait patterns, particularly in cases of anterior cruciate ligament injuries and knee osteoarthritis, has enabled precise classification of gait parameters. Using the OptiTrack system for data collection on both healthy individuals and those with injuries or diseases, a high accuracy model has been achieved in classification, expressed through metrics such as accuracy, precision, recall, and F1 Score. This approach provides efficient and objective classification of potential injuries or diseases, significantly enhancing the diagnosis, therapy, and prevention of knee joint injuries and diseases. | en_US |
dc.language.iso | en | en_US |
dc.rights | info:eu-repo/semantics/openAccess | - |
dc.source | 2024 26th International Conference on Digital Signal Processing and its Applications (DSPA) | en_US |
dc.subject | Gait analysis | en_US |
dc.subject | ACL | en_US |
dc.subject | osteoarthritis | en_US |
dc.subject | Random forest | en_US |
dc.title | Application of the Random Forest Algorithm for Identifying Abnormal Patterns of Knee Joint Movement | en_US |
dc.type | conferenceObject | en_US |
dc.description.version | Author's version | en_US |
dc.identifier.doi | 10.1109/DSPA60853.2024.10510126 | en_US |
dc.type.version | PublishedVersion | en_US |
Налази се у колекцијама: | Faculty of Engineering, Kragujevac |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
SPS_et al - DSPA-2024-ENG.pdf Ограничен приступ | 687.83 kB | Adobe PDF | ![]() Погледајте |
Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.