Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/21097
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDjordjevic, Katarina-
dc.contributor.authorGalovic, Slobodanka-
dc.contributor.authorJordovic Pavlovic, Miroslava-
dc.contributor.authorNesic, Mioljub-
dc.contributor.authorPopović, Marica-
dc.contributor.authorĆojbašić, Žarko-
dc.contributor.authorMarkushev, Dragan-
dc.date.accessioned2024-09-17T06:09:04Z-
dc.date.available2024-09-17T06:09:04Z-
dc.date.issued2020-
dc.identifier.issn0306-8919en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/21097-
dc.description.abstractThis paper introduces the possibility of the determination of optical absorption and reflexivity coefficient of silicon samples using neural networks and reverse-back procedure based on the photoacoustics response in the frequency domain. Differences between neural network predictions and parameters obtained with standard photoacoustic signal correction procedures are used to adjust our experimental set-up due to the instability of the optical excitation source and the state (contamination) of the illuminated surface. It has been shown that the changes of the optical absorption values correspond to the light source wavelength fluctuations, while changes in the reflexivity coefficient, obtained in this way, correspond to the small effect of the ultrathin layer formation of SiO2 due to the natural process of surface oxidation.en_US
dc.description.sponsorshipMinistry of Education, Science and Technological Development of the Republic of Serbia under the Projects Nos. ON171016 and III45005en_US
dc.language.isoenen_US
dc.relation.ispartofOptical and Quantum Electronicsen_US
dc.subjectPhotoacousticen_US
dc.subjectSemiconductorsen_US
dc.subjectArtificial neural networksen_US
dc.subjectThermal diffusionen_US
dc.subjectThermal expansionen_US
dc.subjectPhotothermalen_US
dc.subjectInverse problemen_US
dc.subjectn-type siliconen_US
dc.subjectReverse-back procedureen_US
dc.titlePhotoacoustic optical semiconductor characterization based on machine learning and reverse-back procedureen_US
dc.typearticleen_US
dc.description.versionPublisheden_US
dc.identifier.doi10.1007/s11082-020-02373-xen_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Mechanical and Civil Engineering, Kraljevo

Page views(s)

190

Downloads(s)

5

Files in This Item:
File Description SizeFormat 
OQE_52_2020.pdf
  Restricted Access
76.95 kBAdobe PDFView/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.