Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/21550
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTadić, Danijela-
dc.contributor.authorKomatina, Nikola-
dc.contributor.authorSavković, Marija-
dc.date.accessioned2024-11-19T12:10:15Z-
dc.date.available2024-11-19T12:10:15Z-
dc.date.issued2024-
dc.identifier.isbn978-99976-085-2-9en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/21550-
dc.description.abstractThis study analyzes demand trends using statistical methods, specifically exponential smoothing and regression analysis, applied to data from an automotive supply chain company. The analysis of order records for the first 28 weeks of the year reveals that exponential smoothing, with a smoothing parameter of α=0.5, provides more accurate forecasts compared to regression analysis. This conclusion is supported by lower forecast error values (MAPE, MSE, and MAD) for the exponential smoothing method. The findings suggest that exponential smoothing is a more reliable tool for demand forecasting in this context.en_US
dc.language.isoenen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectAutomotive industryen_US
dc.subjectDemand forecastingen_US
dc.subjectExponential smoothingen_US
dc.subjectForecast erroren_US
dc.subjectRegression analysisen_US
dc.titleForecasting demand trends in automotive industry: Comparative analysis of exponential smoothing and regression analysisen_US
dc.typeconferenceObjecten_US
dc.description.versionPublisheden_US
dc.type.versionPublishedVersionen_US
dc.source.conferenceConference on Mechanical Engineering Technologies and Applications COMETa 2024en_US
Appears in Collections:Faculty of Engineering, Kragujevac

Page views(s)

19

Downloads(s)

1

Files in This Item:
File Description SizeFormat 
Zbornik radova COMETa2024-568-575.pdf348.96 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons