Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/21863
Title: The Index Function Operator for O-regularly Varying Functions
Authors: Đurčić, Dragan
Fatić, Danica
Elez, Nebojša
Journal: Kragujevac Journal of Mathematics
Issue Date: 2023
Abstract: The paper examines the functional transformation K of the class ORVφ (see [3]) into the class of positive functions on interval (0, +∞) defined as follows: (0.1) K(f ) = kf , where kf (λ) = lim sup x→+∞ f (λx) f (x) , λ ∈ (0, +∞), and f ∈ ORVφ. Let f ∈ IRVφ or SOφ (see [4]), K be the transformation (0.1) and for any n ∈ N, Kn(f ) = K(K · · · (K ︸ ︷︷ ︸ n (f )) · · · ), then the function p(s) = limn→+∞ Kn(f )(s), s > 0, is IRVφ (and continuous) and SOφ, respectively.
URI: https://scidar.kg.ac.rs/handle/123456789/21863
Type: article
DOI: 10.46793/KgJMat2307.1041DJ
ISSN: 14509628
Appears in Collections:Faculty of Technical Sciences, Čačak

Page views(s)

102

Downloads(s)

7

Files in This Item:
File Description SizeFormat 
kjm_47_7-5.pdf406.94 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.