Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/22729
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMilicevic, Bogdan-
dc.contributor.authorMilovanović, Vladimir-
dc.contributor.editorSaveljic I.-
dc.contributor.editorFilipovic, Nenad-
dc.date.accessioned2025-12-03T07:54:48Z-
dc.date.available2025-12-03T07:54:48Z-
dc.date.issued2025-
dc.identifier.isbn978-86-82172-05-5en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/22729-
dc.description.abstractParticle Swarm Optimization (PSO) remains a popular, simple, and strong baseline for numerical optimization, yet its performance depends critically on a small set of hyper-parameters (e.g., inertia weight w and cognitive and social coefficients c1, c2) and on structural design choices (e.g., topology, velocity clamps). Over the last decade, reinforcement learning (RL) has emerged as a principled, data-driven way to adapt these design choices online—either by directly controlling parameters, reshaping swarm interactions, selecting variation operators, or transferring control policies across runs. This survey systematizes RL–for–PSO tuning along four families: (1) direct parameter control, (2) topology/structure control, (3) operator/strategy selection, and (4) cross-run memory and transfer. We highlight representative methods—including tabular Q-learning, Deep Q-Networks (DQN), deterministic policy gradients (DDPG), and hybrid RL–PSO schemes—summarize empirical evidence, and distill practical design patterns (state, action, reward, and training protocols). We conclude with open challenges in stability, sample efficiency, safety-constrained control, and reproducible benchmarking.en_US
dc.language.isoenen_US
dc.publisherInstitute for Information Technologies, University of Kragujevacen_US
dc.relation.ispartofBook of Proceedings International Conference on Chemo and BioInformatics (3 ; 2025 ; Kragujevac)en_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectparticle swarm optimizationen_US
dc.subjecteinforcement learningen_US
dc.subjectparameter tuningen_US
dc.titleA Survey of Reinforcement Learning Approaches for Tuning Particle Swarm Optimizationen_US
dc.typeconferenceObjecten_US
dc.description.versionPublisheden_US
dc.identifier.doi10.46793/ICCBIKG25.198Men_US
dc.type.versionPublishedVersionen_US
dc.source.conference3rd International Conference on Chemo and Bioinformatics ICCBIKG 2025en_US
Appears in Collections:Institute for Information Technologies, Kragujevac

Downloads(s)

2

Files in This Item:
File Description SizeFormat 
199-202-Milicevic.pdf626.72 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons