Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/9224
Title: Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis
Authors: Gajic D.
Djurovic̀ Ž.
Gligorijevic, Jovan
Di Gennaro, Stefano
Savic Gajic, Ivana
Issue Date: 2015
Abstract: © 2015 Gajic, Djurovic, Gligorijevic, Di Gennaro and Savic-Gajic. We present a new technique for detection of epileptiform activity in EEG signals. After preprocessing of EEG signals we extract representative features in time, frequency and time-frequency domain as well as using non-linear analysis. The features are extracted in a few frequency sub-bands of clinical interest since these sub-bands showed much better discriminatory characteristics compared with the whole frequency band. Then we optimally reduce the dimension of feature space to two using scatter matrices. A decision about the presence of epileptiform activity in EEG signals is made by quadratic classifiers designed in the reduced two-dimensional feature space. The accuracy of the technique was tested on three sets of electroencephalographic (EEG) signals recorded at the University Hospital Bonn: surface EEG signals from healthy volunteers, intracranial EEG signals from the epilepsy patients during the seizure free interval from within the seizure focus and intracranial EEG signals of epileptic seizures also from within the seizure focus. An overall detection accuracy of 98.7% was achieved.
URI: https://scidar.kg.ac.rs/handle/123456789/9224
Type: article
DOI: 10.3389/fncom.2015.00038
SCOPUS: 2-s2.0-84927642979
Appears in Collections:Faculty of Engineering, Kragujevac

Page views(s)

506

Downloads(s)

21

Files in This Item:
File Description SizeFormat 
10.3389-fncom.2015.00038.pdf1.65 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons